
Linear Structure

1 / 86

1. Introduction

2. Stacks

3. Queues

4. Deques

2 / 86

3.1~3.2 What Are Linear ADT?

3 / 86

They are data collections whose items are ordered depending on how they are added or
removed. Once an item is added, it stays in that position relative to the other elements
that came before and came after it. Collections such as these are often referred to as
linear ADT.

4 / 86

They are data collections whose items are ordered depending on how they are added or
removed. Once an item is added, it stays in that position relative to the other elements
that came before and came after it. Collections such as these are often referred to as
linear ADT.

Linear ADT can be thought of as having two ends. Sometimes these ends are referred to
as the left and the right, or in some cases the front and the rear.

4 / 86

They are data collections whose items are ordered depending on how they are added or
removed. Once an item is added, it stays in that position relative to the other elements
that came before and came after it. Collections such as these are often referred to as
linear ADT.

Linear ADT can be thought of as having two ends. Sometimes these ends are referred to
as the left and the right, or in some cases the front and the rear.

What distinguishes one linear structure from another is the way in which items are added
and removed, in particular the location where these additions and removals occur.

4 / 86

3.3 Stacks

5 / 86

A stack (sometimes called a push-down stack) is an ordered collection of items where the
addition of new items and the removal of existing items always takes place at the same
end. This end is commonly referred to as the top. The end opposite the top is known as
the base.

6 / 86

A stack (sometimes called a push-down stack) is an ordered collection of items where the
addition of new items and the removal of existing items always takes place at the same
end. This end is commonly referred to as the top. The end opposite the top is known as
the base.

The base of the stack is significant since items stored in the stack that are closer to the
base represent those that have been in the stack the longest. The most recently added
item is the one that is in position to be removed first. This ordering principle is sometimes
called LIFO, or last in, first out.

6 / 86

Almost any cafeteria has a stack of trays or plates where you take the one at the top,
uncovering a new tray or plate for the next customer in line. Imagine a stack of books on
a desk. The only book whose cover is visible is the one on top. To access others in the
stack, we need to remove the ones that are sitting on top of them.

7 / 86

Almost any cafeteria has a stack of trays or plates where you take the one at the top,
uncovering a new tray or plate for the next customer in line. Imagine a stack of books on
a desk. The only book whose cover is visible is the one on top. To access others in the
stack, we need to remove the ones that are sitting on top of them.

7 / 86

Assume you start out with a clean desktop. Now place books one at a time on top of each
other. You are constructing a stack. Consider what happens when you begin removing
books. The order that they are removed is exactly the reverse of the order that they were
placed.

8 / 86

Assume you start out with a clean desktop. Now place books one at a time on top of each
other. You are constructing a stack. Consider what happens when you begin removing
books. The order that they are removed is exactly the reverse of the order that they were
placed.

Stacks are fundamentally important, as they can be used to reverse the order of items.
The order of insertion is the reverse of the order of removal:

8 / 86

Assume you start out with a clean desktop. Now place books one at a time on top of each
other. You are constructing a stack. Consider what happens when you begin removing
books. The order that they are removed is exactly the reverse of the order that they were
placed.

Stacks are fundamentally important, as they can be used to reverse the order of items.
The order of insertion is the reverse of the order of removal:

8 / 86

For example, every web browser has a Back button. As you navigate from web page to
web page, those pages are placed on a stack (actually it is the URLs that are going on the
stack). The current page that you are viewing is on the top and the first page you looked
at is at the base. If you click on the Back button, you begin to move in reverse order
through the pages!

9 / 86

3.4 The Stack Abstract Data Type

10 / 86

The stack operations are given below:

11 / 86

The stack operations are given below:

Stack() creates a new stack that is empty. It needs no parameters and returns an
empty stack.

11 / 86

The stack operations are given below:

Stack() creates a new stack that is empty. It needs no parameters and returns an
empty stack.

push(item) adds a new item to the top of the stack. It needs the item and
returns nothing.

pop() removes the top item from the stack. It needs no parameters and returns
the item. The stack is modified.

11 / 86

The stack operations are given below:

Stack() creates a new stack that is empty. It needs no parameters and returns an
empty stack.

push(item) adds a new item to the top of the stack. It needs the item and
returns nothing.

pop() removes the top item from the stack. It needs no parameters and returns
the item. The stack is modified.

peek() returns the top item from the stack but does not remove it. It needs no
parameters. The stack is not modified.
is_empty() tests to see whether the stack is empty. It needs no parameters and
returns a boolean value.
size() returns the number of items on the stack. It needs no parameters and
returns an integer.

11 / 86

Under Stack Contents, the top item is listed at the far right:

12 / 86

Under Stack Contents, the top item is listed at the far right:

Stack Operation Stack Contents Return Value

s.is_empty() [] True

s.push(4) [4]

s.push('dog') [4, 'dog']

s.peek() [4, 'dog'] 'dog'

s.push(True) [4, 'dog', True]

s.size() [4, 'dog', True] 3

s.is_empty() [4, 'dog', True] False

s.push(8.4) [4, 'dog', True, 8.4]

s.pop() [4, 'dog', True] 8.4

s.pop() [4, 'dog'] True

s.size() [4, 'dog'] 2

12 / 86

3.5 Implementing a Stack in Python

13 / 86

Now that we have clearly defined the stack as an ADT, we will turn our attention to using
Python to implement the stack. Recall that we will implement an abstract data type
with a physical implementation called data structure.

14 / 86

Now that we have clearly defined the stack as an ADT, we will turn our attention to using
Python to implement the stack. Recall that we will implement an abstract data type
with a physical implementation called data structure.

The implementation of choice for an abstract data type such as a stack is the creation of a
new class. The stack operations are implemented as methods. Further, to implement a
stack, which is a collection of elements, it makes sense to utilize the power and simplicity
of the list provided by Python .

14 / 86

Now that we have clearly defined the stack as an ADT, we will turn our attention to using
Python to implement the stack. Recall that we will implement an abstract data type
with a physical implementation called data structure.

The implementation of choice for an abstract data type such as a stack is the creation of a
new class. The stack operations are implemented as methods. Further, to implement a
stack, which is a collection of elements, it makes sense to utilize the power and simplicity
of the list provided by Python .

Recall that the list class in Python provides an ordered collection mechanism and a
set of methods. We need only to decide which end of the list will be considered the
top of the stack and which will be the base. Once that decision is made, the operations
can be implemented using the list methods such as append() and pop() .

14 / 86

Assumes that the end (right) of the list will hold the top element of the stack:

15 / 86

Assumes that the end (right) of the list will hold the top element of the stack:

In [1]: class Stack:
 def __init__(self):
 self._items = []

 def is_empty(self):
 """Check if the stack is empty"""
 return self._items == []

 def push(self, item):
 """Add an item to the stack"""
 self._items.append(item)

 def pop(self):
 """Remove an item from the stack"""
 return self._items.pop()

 def peek(self):
 """Get the value of the top item in the stack"""
 return self._items[-1]

 def size(self):
 """Get the number of items in the stack"""
 return len(self._items)

 def __str__(self):
 return str(self._items)

15 / 86

In [2]: import sys
sys.path.append("../pythonds3/")

16 / 86

In [2]: import sys
sys.path.append("../pythonds3/")

In [3]: #from pythonds3.basic import Stack

s = Stack()

print(s.is_empty())
s.push(4)
s.push("dog")
print(s.peek())
print(s)
s.push(True)
print(s.size())
print(s.is_empty())
s.push(8.4)
print(s)
print(s.pop())
print(s.pop())
print(s.size())

True
dog
[4, 'dog']
3
False
[4, 'dog', True, 8.4]
8.4
True
2 16 / 86

We could use a list where the top is at the beginning instead of at the end.

17 / 86

We could use a list where the top is at the beginning instead of at the end.

In [4]: class Stack2:
 def __init__(self):
 self._items = []

 def is_empty(self):
 """Check if the stack is empty"""
 return self._items == []

 def push(self, item):
 """Add an item to the stack"""
 self._items.insert(0, item)

 def pop(self):
 """Remove an item from the stack"""
 return self._items.pop(0)

 def peek(self):
 """Get the value of the top item in the stack"""
 return self._items[0]

 def size(self):
 """Get the number of items in the stack"""
 return len(self._items)

 def __str__(self):
 return str(self._items)

17 / 86

In this case, the previous pop() and append() methods would no longer work and we
would have to index position 0 (the first item in the list) explicitly using pop() and
insert() !

18 / 86

In this case, the previous pop() and append() methods would no longer work and we
would have to index position 0 (the first item in the list) explicitly using pop() and
insert() !

In [5]: s = Stack2()

print(s.is_empty())
s.push(4)
s.push("dog")
print(s.peek())
print(s)
s.push(True)
print(s.size())
print(s.is_empty())
s.push(8.4)
print(s)
print(s.pop())
print(s.pop())
print(s.size())

True
dog
['dog', 4]
3
False
[8.4, True, 'dog', 4]
8.4
True
2 18 / 86

This ability to change the physical implementation of an ADT while maintaining the logical
characteristics is an example of abstraction at work. However, even though the stack will
work either way, if we consider the performance of the two implementations, there is
definitely a difference!

19 / 86

This ability to change the physical implementation of an ADT while maintaining the logical
characteristics is an example of abstraction at work. However, even though the stack will
work either way, if we consider the performance of the two implementations, there is
definitely a difference!

Recall that the append() and pop() operations were both . This means that the first
implementation will perform push() and pop() in constant time no matter how many
items are on the stack.

19 / 86

This ability to change the physical implementation of an ADT while maintaining the logical
characteristics is an example of abstraction at work. However, even though the stack will
work either way, if we consider the performance of the two implementations, there is
definitely a difference!

Recall that the append() and pop() operations were both . This means that the first
implementation will perform push() and pop() in constant time no matter how many
items are on the stack.

The performance of the second implementation suffers in that the insert(0) and
pop(0) operations will both require for a stack of size . Clearly, even though the
implementations are logically equivalent, they would have very different timings when
performing benchmark testing!

19 / 86

Exercise: Write a function rev_string(my_str) that uses a stack to reverse the characters in a
string.

20 / 86

Exercise: Write a function rev_string(my_str) that uses a stack to reverse the characters in a
string.

In [6]: #from pythonds3.basic import Stack
def rev_string(my_str):
 s = Stack()
 return r_str

20 / 86

Exercise: Write a function rev_string(my_str) that uses a stack to reverse the characters in a
string.

In [6]: #from pythonds3.basic import Stack
def rev_string(my_str):
 s = Stack()
 return r_str

In []: rev_string("NSYSU")

20 / 86

3.8. Converting Decimal Numbers to Binary
Numbers

21 / 86

Binary representation is important in computer science since all values stored within a
computer exist as a string of binary digits, a string of 0s and 1s.

22 / 86

Binary representation is important in computer science since all values stored within a
computer exist as a string of binary digits, a string of 0s and 1s.

Integer values are common data items. They are used in computer programs and
computation all the time. We learn about them in math class and of course represent
them using the decimal number system, or base 10. The decimal number and its
corresponding binary equivalent are interpreted respectively as:

22 / 86

Binary representation is important in computer science since all values stored within a
computer exist as a string of binary digits, a string of 0s and 1s.

Integer values are common data items. They are used in computer programs and
computation all the time. We learn about them in math class and of course represent
them using the decimal number system, or base 10. The decimal number and its
corresponding binary equivalent are interpreted respectively as:

22 / 86

But how can we easily convert integer values into binary numbers? The answer is an
algorithm called Divide by 2 that uses a stack to keep track of the digits for the binary
result!

23 / 86

But how can we easily convert integer values into binary numbers? The answer is an
algorithm called Divide by 2 that uses a stack to keep track of the digits for the binary
result!

The Divide by 2 algorithm assumes that we start with an integer greater than 0. A simple
iteration then continually divides the decimal number by 2 and keeps track of the
remainder.

23 / 86

But how can we easily convert integer values into binary numbers? The answer is an
algorithm called Divide by 2 that uses a stack to keep track of the digits for the binary
result!

The Divide by 2 algorithm assumes that we start with an integer greater than 0. A simple
iteration then continually divides the decimal number by 2 and keeps track of the
remainder.

The first division by 2 gives information as to whether the value is even or odd. An even
value will have the digit 0 in the ones place. An odd value will have the digit 1 in the ones
place. We think about building our binary number as a sequence of digits; the first
remainder we compute will actually be the last digit in the sequence

23 / 86

24 / 86

We again see the reversal property that signals that a stack is likely to be the appropriate
data structure for solving the problem!

24 / 86

The Python code below implements the Divide by 2 algorithm. The function
divide_by_2() takes an argument that is a decimal number and repeatedly divides it
by 2:

25 / 86

The Python code below implements the Divide by 2 algorithm. The function
divide_by_2() takes an argument that is a decimal number and repeatedly divides it
by 2:

In [13]: from pythonds3.basic import Stack

def divide_by_2(decimal_num):
 rem_stack = Stack()

 while decimal_num > 0:
 rem = decimal_num % 2
 rem_stack.push(rem)
 decimal_num = decimal_num // 2

 bin_string = ""
 while not rem_stack.is_empty():
 bin_string = bin_string + str(rem_stack.pop())

 return bin_string

25 / 86

The Python code below implements the Divide by 2 algorithm. The function
divide_by_2() takes an argument that is a decimal number and repeatedly divides it
by 2:

In [13]: from pythonds3.basic import Stack

def divide_by_2(decimal_num):
 rem_stack = Stack()

 while decimal_num > 0:
 rem = decimal_num % 2
 rem_stack.push(rem)
 decimal_num = decimal_num // 2

 bin_string = ""
 while not rem_stack.is_empty():
 bin_string = bin_string + str(rem_stack.pop())

 return bin_string

In [14]: print(divide_by_2(42))
print(divide_by_2(31))

101010
11111

25 / 86

It can easily be extended to perform the conversion for any base. In computer science it is
common to use a number of different encodings. The most common of these are binary,
octal (base 8), and hexadecimal (base 16).

26 / 86

It can easily be extended to perform the conversion for any base. In computer science it is
common to use a number of different encodings. The most common of these are binary,
octal (base 8), and hexadecimal (base 16).

The decimal number and its corresponding octal and hexadecimal equivalents and are
interpreted as

26 / 86

It can easily be extended to perform the conversion for any base. In computer science it is
common to use a number of different encodings. The most common of these are binary,
octal (base 8), and hexadecimal (base 16).

The decimal number and its corresponding octal and hexadecimal equivalents and are
interpreted as

26 / 86

The function divide_by_2() can be modified to accept not only a decimal value but
also a base for the intended conversion. The "Divide by 2" idea is simply replaced with a
more general "Divide by base."

27 / 86

The function divide_by_2() can be modified to accept not only a decimal value but
also a base for the intended conversion. The "Divide by 2" idea is simply replaced with a
more general "Divide by base."

Base 2 through base 10 numbers need a maximum of 10 digits, so the typical digit
characters 0 through 9 work fine.

27 / 86

The function divide_by_2() can be modified to accept not only a decimal value but
also a base for the intended conversion. The "Divide by 2" idea is simply replaced with a
more general "Divide by base."

Base 2 through base 10 numbers need a maximum of 10 digits, so the typical digit
characters 0 through 9 work fine.

The problem comes when we go beyond base 10. We can no longer simply use the
remainders, as they are themselves represented as two-digit decimal numbers. Instead we
need to create a set of digits that can be used to represent those remainders beyond 9

27 / 86

In [15]: from pythonds3.basic import Stack

def base_converter(decimal_num, base):
 digits = "0123456789ABCDEF"
 rem_stack = Stack()

 while decimal_num > 0:
 rem = decimal_num % base
 rem_stack.push(rem)
 decimal_num = decimal_num // base

 new_string = ""
 while not rem_stack.is_empty():
 new_string = new_string + digits[rem_stack.pop()]

 return new_string

28 / 86

In [15]: from pythonds3.basic import Stack

def base_converter(decimal_num, base):
 digits = "0123456789ABCDEF"
 rem_stack = Stack()

 while decimal_num > 0:
 rem = decimal_num % base
 rem_stack.push(rem)
 decimal_num = decimal_num // base

 new_string = ""
 while not rem_stack.is_empty():
 new_string = new_string + digits[rem_stack.pop()]

 return new_string

In [16]: print(base_converter(25, 2))
print(base_converter(25, 16))

11001
19

28 / 86

3.9. Infix, Prefix, and Postfix Expressions

29 / 86

When you write an arithmetic expression such as B · C , the form of the expression
provides you with information so that you can interpret it correctly.

30 / 86

When you write an arithmetic expression such as B · C , the form of the expression
provides you with information so that you can interpret it correctly.

In this case we know that the variable B is being multiplied by the variable C since the
multiplication operator · appears between them in the expression. This type of notation
is referred to as infix since the operator is in between the two operands that it is working
on.

30 / 86

When you write an arithmetic expression such as B · C , the form of the expression
provides you with information so that you can interpret it correctly.

In this case we know that the variable B is being multiplied by the variable C since the
multiplication operator · appears between them in the expression. This type of notation
is referred to as infix since the operator is in between the two operands that it is working
on.

Consider another infix example, A + B · C . The operators + and · still appear
between the operands, but there is a problem. Which operands do they work on?

30 / 86

Does the + work on A and B , or does the · take B and C ? The expression seems
ambiguous. In fact, we know something about the operators + and · . Each operator has
a precedence level. Operators of higher precedence are used before operators of lower
precedence.

31 / 86

Does the + work on A and B , or does the · take B and C ? The expression seems
ambiguous. In fact, we know something about the operators + and · . Each operator has
a precedence level. Operators of higher precedence are used before operators of lower
precedence.

The only thing that can change that order is the presence of parentheses. The precedence
order for arithmetic operators places multiplication and division above addition and
subtraction. If two operators of equal precedence appear, then a left-to-right ordering or
associativity is used.

31 / 86

Does the + work on A and B , or does the · take B and C ? The expression seems
ambiguous. In fact, we know something about the operators + and · . Each operator has
a precedence level. Operators of higher precedence are used before operators of lower
precedence.

The only thing that can change that order is the presence of parentheses. The precedence
order for arithmetic operators places multiplication and division above addition and
subtraction. If two operators of equal precedence appear, then a left-to-right ordering or
associativity is used.

Let’s interpret the troublesome expression A + B · C using operator precedence. B
and C are multiplied first, and A is then added to that result. (A + B) · C would force
the addition of A and B to be done first before the multiplication. In the expression A +
B + C , by precedence (via associativity), the leftmost + would be done first.

31 / 86

Computers need to know exactly what operations to perform and in what order.

32 / 86

Computers need to know exactly what operations to perform and in what order.

One way to write an expression that guarantees there will be no confusion with respect to
the order of operations is to create what is called a fully parenthesized expression. This
type of expression uses one pair of parentheses for each operator. The parentheses
dictate the order of operations; there is no ambiguity!

32 / 86

Computers need to know exactly what operations to perform and in what order.

One way to write an expression that guarantees there will be no confusion with respect to
the order of operations is to create what is called a fully parenthesized expression. This
type of expression uses one pair of parentheses for each operator. The parentheses
dictate the order of operations; there is no ambiguity!

The expression A + B · C + D can be rewritten as ((A + (B · C)) + D) to show
that the multiplication happens first, followed by the leftmost addition. A + B + C + D
can be written as (((A + B) + C) + D) since the addition operations associate from
left to right.

32 / 86

There are two other very important expression formats that may not seem obvious to you
at first. Consider the infix expression A + B . What would happen if we moved the
operator before the two operands? The resulting expression would be + A B . Likewise,
we could move the operator to the end, resulting in A B + . These look a bit strange.

33 / 86

There are two other very important expression formats that may not seem obvious to you
at first. Consider the infix expression A + B . What would happen if we moved the
operator before the two operands? The resulting expression would be + A B . Likewise,
we could move the operator to the end, resulting in A B + . These look a bit strange.

These changes to the position of the operator with respect to the operands create two
new expression formats, prefix and postfix. Prefix expression notation requires that all
operators precede the two operands that they work on. Postfix, on the other hand,
requires that its operators come after the corresponding operands.

33 / 86

There are two other very important expression formats that may not seem obvious to you
at first. Consider the infix expression A + B . What would happen if we moved the
operator before the two operands? The resulting expression would be + A B . Likewise,
we could move the operator to the end, resulting in A B + . These look a bit strange.

These changes to the position of the operator with respect to the operands create two
new expression formats, prefix and postfix. Prefix expression notation requires that all
operators precede the two operands that they work on. Postfix, on the other hand,
requires that its operators come after the corresponding operands.

A + B · C would be written as + A · B C in prefix. The multiplication operator comes
immediately before the operands B and C , denoting that · has precedence over + .
The addition operator then appears before the A and the result of the multiplication.

33 / 86

In postfix, the expression would be A B C · + . Again, the order of operations is
preserved since the · appears immediately after the B and the C , denoting that · has
precedence, with + coming after.

34 / 86

In postfix, the expression would be A B C · + . Again, the order of operations is
preserved since the · appears immediately after the B and the C , denoting that · has
precedence, with + coming after.

Now consider the infix expression (A + B) · C . Recall that in this case, infix requires the
parentheses to force the performance of the addition before the multiplication.

34 / 86

However, when A + B was written in prefix, the addition operator was simply moved
before the operands, + A B . The result of this operation becomes the first operand for
the multiplication. The multiplication operator is moved in front of the entire expression,
giving us · + A B C . Likewise, in postfix A B + forces the addition to happen first:

35 / 86

However, when A + B was written in prefix, the addition operator was simply moved
before the operands, + A B . The result of this operation becomes the first operand for
the multiplication. The multiplication operator is moved in front of the entire expression,
giving us · + A B C . Likewise, in postfix A B + forces the addition to happen first:

Infix Expression Prefix Expression Postfix Expression

A + B + A B A B +

A + B · C + A · B C A B C · +

(A + B) · C · + A B C A B + C ·

A + B · C + D + + A · B C D A B C · + D +

(A + B) · (C + D) · + A B + C D A B + C D + ·

A · B + C · D + · A B · C D A B · C D · +

A + B + C + D + + + A B C D A B + C + D +

35 / 86

3.9.1 Conversion of Infix Expressions to Prefix and Postfix

36 / 86

The first technique that we will consider uses the notion of a fully parenthesized
expression that was discussed earlier.

37 / 86

The first technique that we will consider uses the notion of a fully parenthesized
expression that was discussed earlier.

Recall that A + B · C can be written as (A + (B · C)) to show explicitly that the
multiplication has precedence over the addition. Look at the right parenthesis in the
subexpression (B · C) above. If we were to move the multiplication symbol to that
position and remove the matching left parenthesis, giving us B C · , we would in effect
have converted the subexpression to postfix notation.

37 / 86

The first technique that we will consider uses the notion of a fully parenthesized
expression that was discussed earlier.

Recall that A + B · C can be written as (A + (B · C)) to show explicitly that the
multiplication has precedence over the addition. Look at the right parenthesis in the
subexpression (B · C) above. If we were to move the multiplication symbol to that
position and remove the matching left parenthesis, giving us B C · , we would in effect
have converted the subexpression to postfix notation.

If the addition operator were also moved to its corresponding right parenthesis position
and the matching left parenthesis were removed, the complete postfix expression would
result:

37 / 86

The first technique that we will consider uses the notion of a fully parenthesized
expression that was discussed earlier.

Recall that A + B · C can be written as (A + (B · C)) to show explicitly that the
multiplication has precedence over the addition. Look at the right parenthesis in the
subexpression (B · C) above. If we were to move the multiplication symbol to that
position and remove the matching left parenthesis, giving us B C · , we would in effect
have converted the subexpression to postfix notation.

If the addition operator were also moved to its corresponding right parenthesis position
and the matching left parenthesis were removed, the complete postfix expression would
result:

37 / 86

If we do the same thing but instead of moving the symbol to the position of the right, we
move it to the left parenthesis, we get prefix notation. The position of the parenthesis
pair is actually a clue to the final position of the enclosed operator.

38 / 86

If we do the same thing but instead of moving the symbol to the position of the right, we
move it to the left parenthesis, we get prefix notation. The position of the parenthesis
pair is actually a clue to the final position of the enclosed operator.

38 / 86

So in order to convert an expression, no matter how complex, to either prefix or postfix
notation, fully parenthesize the expression using the order of operations. Then move the
enclosed operator to the position of either the left or the right parenthesis depending on
whether you want prefix or postfix notation:

39 / 86

So in order to convert an expression, no matter how complex, to either prefix or postfix
notation, fully parenthesize the expression using the order of operations. Then move the
enclosed operator to the position of either the left or the right parenthesis depending on
whether you want prefix or postfix notation:

39 / 86

3.9.2. General Infix-to-Postfix Conversion

40 / 86

Consider once again the expression A + B · C . As shown above, A B C · + is the
postfix equivalent. We have already noted that the operands A , B , and C stay in their
relative positions. It is only the operators that change position.

41 / 86

Consider once again the expression A + B · C . As shown above, A B C · + is the
postfix equivalent. We have already noted that the operands A , B , and C stay in their
relative positions. It is only the operators that change position.

Let’s look again at the operators in the infix expression. The first operator that appears
from left to right is + . However, in the postfix expression, + is at the end since the next
operator, · , has precedence over addition. The order of the operators in the original
expression is reversed in the resulting postfix expression.

41 / 86

Consider once again the expression A + B · C . As shown above, A B C · + is the
postfix equivalent. We have already noted that the operands A , B , and C stay in their
relative positions. It is only the operators that change position.

Let’s look again at the operators in the infix expression. The first operator that appears
from left to right is + . However, in the postfix expression, + is at the end since the next
operator, · , has precedence over addition. The order of the operators in the original
expression is reversed in the resulting postfix expression.

As we process the expression, the operators have to be saved somewhere since their
corresponding right operands are not seen yet. Also, the order of these saved operators
may need to be reversed due to their precedence.

41 / 86

Because of this reversal of order, it makes sense to consider using a stack to keep the
operators until they are needed! What about (A + B) · C ? Recall that A B + C · is
the postfix equivalent. Again, processing this infix expression from left to right, we see +
first. In this case, when we see · , + has already been placed in the result expression
because it has precedence over · by virtue of the parentheses.

42 / 86

Because of this reversal of order, it makes sense to consider using a stack to keep the
operators until they are needed! What about (A + B) · C ? Recall that A B + C · is
the postfix equivalent. Again, processing this infix expression from left to right, we see +
first. In this case, when we see · , + has already been placed in the result expression
because it has precedence over · by virtue of the parentheses.

The conversion algorithm works by saving a left parenthesis to indicate the upcoming
arrival of a high-precedence operator, which waits for the corresponding right parenthesis
to determine its position. When the right parenthesis appears, the operator is popped
from the stack.

42 / 86

1. Create an empty stack (op_stack) for operators and an empty list for output.
2. Convert the input infix string to a list using the string method split() .

43 / 86

1. Create an empty stack (op_stack) for operators and an empty list for output.
2. Convert the input infix string to a list using the string method split() .

3. Scan the token list from left to right:
Append operands to the output list.
Push left parentheses onto op_stack .
For right parentheses, pop op_stack until the left parenthesis is
removed, appending each operator to the output list.
Push operators (· , / , + , -) onto op_stack after removing any higher
or equal precedence operators from the stack and appending them to the
output list.

43 / 86

1. Create an empty stack (op_stack) for operators and an empty list for output.
2. Convert the input infix string to a list using the string method split() .

3. Scan the token list from left to right:
Append operands to the output list.
Push left parentheses onto op_stack .
For right parentheses, pop op_stack until the left parenthesis is
removed, appending each operator to the output list.
Push operators (· , / , + , -) onto op_stack after removing any higher
or equal precedence operators from the stack and appending them to the
output list.

4. After processing the input expression, remove any remaining operators from
op_stack and append them to the output list.

43 / 86

44 / 86

In [18]: from pythonds3.basic import Stack

def infix_to_postfix(infix_expr):
 prec = {"*": 3, "/": 3, "+": 2, "-": 2, "(": 1}
 op_stack = Stack()
 postfix_list = []
 token_list = infix_expr.split()

 for token in token_list:
 if token.isalnum():
 postfix_list.append(token)
 elif token == '(':
 op_stack.push(token)
 elif token == ')':
 while (not op_stack.is_empty()) and op_stack.peek() != '(':
 postfix_list.append(op_stack.pop())
 op_stack.pop() # Pop '('
 else:
 while (not op_stack.is_empty()) and (prec[op_stack.peek()] >= prec
 postfix_list.append(op_stack.pop())
 op_stack.push(token)

 while not op_stack.is_empty():
 postfix_list.append(op_stack.pop())

 return ' '.join(postfix_list)

45 / 86

In [19]: print(infix_to_postfix("A * B + C * D"))
print(infix_to_postfix("(A + B) * C - (D - E) * (F + G)"))

A B * C D * +
A B + C * D E - F G + * -

46 / 86

3.9.3. Postfix Evaluation

47 / 86

We will now consider the evaluation of an expression that is already in postfix notation. In
this case, a stack is again the data structure of choice. However, as you scan the postfix
expression, it is the operands that must wait, not the operators as in the conversion
algorithm above.

48 / 86

We will now consider the evaluation of an expression that is already in postfix notation. In
this case, a stack is again the data structure of choice. However, as you scan the postfix
expression, it is the operands that must wait, not the operators as in the conversion
algorithm above.

Another way to think about the solution is that whenever an operator is seen on the input,
the two most recent operands will be used in the evaluation.

48 / 86

To see this in more detail, consider the postfix expression 4 5 6 · + . As you scan the
expression from left to right, you first encounter the operands 4 and 5 . At this point,
you are still unsure what to do with them until you see the next symbol. Placing each on
the stack ensures that they are available if an operator comes next.

49 / 86

To see this in more detail, consider the postfix expression 4 5 6 · + . As you scan the
expression from left to right, you first encounter the operands 4 and 5 . At this point,
you are still unsure what to do with them until you see the next symbol. Placing each on
the stack ensures that they are available if an operator comes next.

49 / 86

A slightly more complex example, 7 8 + 3 2 + / . First, the stack size grows, shrinks,
and then grows again as the subexpressions are evaluated. Second, the division operation
needs to be handled carefully. Recall that the operands in the postfix expression are in
their original order since postfix changes only the placement of operators. When the
operands for the division are popped from the stack, they are reversed. Since division is
not a commutative operator, we must be sure that the order of the operands is not
switched!

50 / 86

A slightly more complex example, 7 8 + 3 2 + / . First, the stack size grows, shrinks,
and then grows again as the subexpressions are evaluated. Second, the division operation
needs to be handled carefully. Recall that the operands in the postfix expression are in
their original order since postfix changes only the placement of operators. When the
operands for the division are popped from the stack, they are reversed. Since division is
not a commutative operator, we must be sure that the order of the operands is not
switched!

50 / 86

1. Create an empty stack called operand_stack .
2. Convert the string to a list by using the string method split() .

51 / 86

1. Create an empty stack called operand_stack .
2. Convert the string to a list by using the string method split() .

3. Scan the token list from left to right.
If the token is an operand, convert it from a string to an integer and push
the value onto the operand_stack .
If the token is an operator, · , / , + , or - , it will need two operands. Pop
the operand_stack twice. The first pop is the second operand and the
second pop is the first operand. Perform the arithmetic operation. Push
the result back on the operand_stack .

4. When the input expression has been completely processed, the result is on the
stack. Pop the operand_stack and return the value.

51 / 86

To assist with the arithmetic, a helper function do_math is defined:

52 / 86

To assist with the arithmetic, a helper function do_math is defined:

In [20]: def do_math(op, op1, op2):
 if op == "*":
 return op1 * op2
 elif op == "/":
 return op1 / op2
 elif op == "+":
 return op1 + op2
 else:
 return op1 - op2

52 / 86

In [21]: from pythonds3.basic import Stack

def postfix_eval(postfix_expr):
 operand_stack = Stack()
 token_list = postfix_expr.split()

 for token in token_list:
 if token in "0123456789":
 operand_stack.push(int(token))
 else:
 operand2 = operand_stack.pop()
 operand1 = operand_stack.pop()
 result = do_math(token, operand1, operand2)
 operand_stack.push(result)
 return operand_stack.pop()

53 / 86

In [22]: print(postfix_eval("7 8 + 3 2 + /"))

3.0

54 / 86

In [22]: print(postfix_eval("7 8 + 3 2 + /"))

3.0

It is important to note that in both the postfix conversion and the postfix evaluation
programs we assumed that there were no errors in the input expression.

54 / 86

Exercise: Modify the infix_to_postfix() function so that it can convert the following
expression: 5 * 3 ^ (4 - 2) . Run the function on the expression and paste the answer here:

55 / 86

Exercise: Modify the infix_to_postfix() function so that it can convert the following
expression: 5 * 3 ^ (4 - 2) . Run the function on the expression and paste the answer here:

In []: from pythonds3.basic import Stack

def infix_to_postfix(infix_expr):
 prec = {"*": 3, "/": 3, "+": 2, "-": 2, "(": 1}
 op_stack = Stack()
 postfix_list = []
 token_list = infix_expr.split()

 for token in token_list:
 if token.isalnum():
 postfix_list.append(token)
 elif token == '(':
 op_stack.push(token)
 elif token == ')':
 while (not op_stack.is_empty()) and op_stack.peek() != '(':
 postfix_list.append(op_stack.pop())
 op_stack.pop() # Pop '('
 else:
 while (not op_stack.is_empty()) and (prec[op_stack.peek()] >= prec
 postfix_list.append(op_stack.pop())
 op_stack.push(token)

 while not op_stack.is_empty():
 postfix_list.append(op_stack.pop())

 return ' '.join(postfix_list)
55 / 86

In []: def do_math(op, op1, op2):
 if op == "*":
 return op1 * op2
 elif op == "/":
 return op1 / op2
 elif op == "+":
 return op1 + op2
 else:
 return op1 - op2

56 / 86

In []: def do_math(op, op1, op2):
 if op == "*":
 return op1 * op2
 elif op == "/":
 return op1 / op2
 elif op == "+":
 return op1 + op2
 else:
 return op1 - op2

In []: print(infix_to_postfix("5 * 3 ^ (4 - 2)"))
print(postfix_eval(infix_to_postfix("5 * 3 ^ (4 - 2)")))

56 / 86

3.10. Queues

57 / 86

A queue is an ordered collection of items where the addition of new items happens at one
end, called the rear, and the removal of existing items occurs at the other end, commonly
called the front. As an element enters the queue it starts at the rear and makes its way
toward the front, waiting until that time when it is the next element to be removed. The
item that has been in the collection the longest is at the front. This ordering principle is
sometimes called FIFO, first in, first out.

58 / 86

A queue is an ordered collection of items where the addition of new items happens at one
end, called the rear, and the removal of existing items occurs at the other end, commonly
called the front. As an element enters the queue it starts at the rear and makes its way
toward the front, waiting until that time when it is the next element to be removed. The
item that has been in the collection the longest is at the front. This ordering principle is
sometimes called FIFO, first in, first out.

The simplest example of a queue is that we wait in a line for a movie, we wait in the
checkout line at a grocery store, and we wait in the cafeteria line.

58 / 86

A queue is an ordered collection of items where the addition of new items happens at one
end, called the rear, and the removal of existing items occurs at the other end, commonly
called the front. As an element enters the queue it starts at the rear and makes its way
toward the front, waiting until that time when it is the next element to be removed. The
item that has been in the collection the longest is at the front. This ordering principle is
sometimes called FIFO, first in, first out.

The simplest example of a queue is that we wait in a line for a movie, we wait in the
checkout line at a grocery store, and we wait in the cafeteria line.

Well-behaved lines, or queues, are very restrictive in that they have only one way in and
only one way out. There is no jumping in the middle and no leaving before you have
waited the necessary amount of time to get to the front.

58 / 86

Computer science also has common examples of queues. Figure shows a simple queue of
Python data objects.

59 / 86

Computer science also has common examples of queues. Figure shows a simple queue of
Python data objects.

59 / 86

Computer science also has common examples of queues. Figure shows a simple queue of
Python data objects.

Operating systems use a number of different queues to control processes within a
computer. The scheduling of what gets done next is typically based on a queuing
algorithm that tries to execute programs as quickly as possible and serve as many users as
it can.

59 / 86

3.11 The Queue Abstract Data Type

60 / 86

The queue operations are given below:

61 / 86

The queue operations are given below:

Queue() creates a new queue that is empty. It needs no parameters and returns
an empty queue.

61 / 86

The queue operations are given below:

Queue() creates a new queue that is empty. It needs no parameters and returns
an empty queue.

enqueue(item) adds a new item to the rear of the queue. It needs the item and
returns nothing.
dequeue() removes the front item from the queue. It needs no parameters and
returns the item. The queue is modified.

61 / 86

The queue operations are given below:

Queue() creates a new queue that is empty. It needs no parameters and returns
an empty queue.

enqueue(item) adds a new item to the rear of the queue. It needs the item and
returns nothing.
dequeue() removes the front item from the queue. It needs no parameters and
returns the item. The queue is modified.

is_empty() tests to see whether the queue is empty. It needs no parameters and
returns a boolean value.
size() returns the number of items in the queue. It needs no parameters and
returns an integer.

61 / 86

Table below shows the results of a sequence of queue operations. The queue contents are
shown such that the front is on the right.

62 / 86

Table below shows the results of a sequence of queue operations. The queue contents are
shown such that the front is on the right.

Queue Operation Queue Contents Return Value

q.is_empty() [] True

q.enqueue(4) [4]

q.enqueue("dog") ['dog', 4]

q.enqueue(True) [True, 'dog', 4]

q.size() [True, 'dog', 4] 3

q.is_empty() [True, 'dog', 4] False

q.enqueue(8.4) [8.4, True, 'dog', 4]

q.dequeue() [8.4, True, 'dog'] 4

q.dequeue() [8.4, True] 'dog'

q.size() [8.4, True] 2

62 / 86

3.12 Implementing a Queue in Python

63 / 86

The implementation assumes that the rear is at position 0 in the list . This allows us to
use the insert() function on lists to add new elements to the rear of the queue. The
pop() operation can be used to remove the front element. Recall that this also means
that enqueue will be and dequeue will be .

64 / 86

The implementation assumes that the rear is at position 0 in the list . This allows us to
use the insert() function on lists to add new elements to the rear of the queue. The
pop() operation can be used to remove the front element. Recall that this also means
that enqueue will be and dequeue will be .

In [23]: class Queue:
 def __init__(self):
 """Create new queue"""
 self._items = []

 def is_empty(self):
 """Check if the queue is empty"""
 return not bool(self._items)

 def enqueue(self, item):
 """Add an item to the queue"""
 self._items.insert(0, item)

 def dequeue(self):
 """Remove an item from the queue"""
 return self._items.pop()

 def size(self):
 """Get the number of items in the queue"""
 return len(self._items)

64 / 86

In [24]: q = Queue()
q.enqueue(4)
q.enqueue("dog")
q.enqueue(True)
print(q.size())
print(q.is_empty())

3
False

65 / 86

3.13. Queue Simulation: Hot Potato

66 / 86

To begin, let’s consider the children’s game hot potato. In this game, children line up in a
circle and pass an item from neighbor to neighbor as fast as they can. At a certain point in
the game, the action is stopped and the child who has the item (the potato) is removed
from the circle. Play continues until only one child is left.

67 / 86

To begin, let’s consider the children’s game hot potato. In this game, children line up in a
circle and pass an item from neighbor to neighbor as fast as they can. At a certain point in
the game, the action is stopped and the child who has the item (the potato) is removed
from the circle. Play continues until only one child is left.

67 / 86

We will implement a general simulation of Hot Potato. Our program will input a list of
names and a constant, call it "num," to be used for counting. It will return the name of the
last person remaining after repetitive counting by num.

68 / 86

We will implement a general simulation of Hot Potato. Our program will input a list of
names and a constant, call it "num," to be used for counting. It will return the name of the
last person remaining after repetitive counting by num.

To simulate the circle, we will use a queue. Assume that the child holding the potato will
be at the front of the queue. Upon passing the potato, the simulation will simply dequeue
and then immediately enqueue that child, putting them at the end of the line.

68 / 86

We will implement a general simulation of Hot Potato. Our program will input a list of
names and a constant, call it "num," to be used for counting. It will return the name of the
last person remaining after repetitive counting by num.

To simulate the circle, we will use a queue. Assume that the child holding the potato will
be at the front of the queue. Upon passing the potato, the simulation will simply dequeue
and then immediately enqueue that child, putting them at the end of the line.

68 / 86

After num dequeue/enqueue operations, the child at the front will be removed
permanently and another cycle will begin. This process will continue until only one name
remains (the size of the queue is 1)!

69 / 86

After num dequeue/enqueue operations, the child at the front will be removed
permanently and another cycle will begin. This process will continue until only one name
remains (the size of the queue is 1)!

In [25]: from pythonds3.basic import Queue

def hot_potato(name_list, num):
 sim_queue = Queue()
 for name in name_list:
 sim_queue.enqueue(name)

 while sim_queue.size() > 1:
 for i in range(num):
 sim_queue.enqueue(sim_queue.dequeue())

 sim_queue.dequeue()

 return sim_queue.dequeue()

69 / 86

In [26]: print(hot_potato(["Bill", "David", "Susan", "Jane", "Kent", "Brad"], 7))

Susan

70 / 86

In [26]: print(hot_potato(["Bill", "David", "Susan", "Jane", "Kent", "Brad"], 7))

Susan

Notice that the list is loaded into the queue such that the first name on the list will be at
the front of the queue. 'Bill' in this case is the first item in the list and therefore moves to
the front of the queue.

70 / 86

Exercise: Implement the queue ADT, using a list such that the rear of the queue is at the end of the list.

71 / 86

Exercise: Implement the queue ADT, using a list such that the rear of the queue is at the end of the list.

In [27]: ## Your code here

71 / 86

3.15 Deques

72 / 86

A deque, also known as a double-ended queue, is an ordered collection of items similar to
the queue. It has two ends, a front and a rear. What makes a deque different is the
unrestrictive nature of adding and removing items.

73 / 86

A deque, also known as a double-ended queue, is an ordered collection of items similar to
the queue. It has two ends, a front and a rear. What makes a deque different is the
unrestrictive nature of adding and removing items.

73 / 86

A deque, also known as a double-ended queue, is an ordered collection of items similar to
the queue. It has two ends, a front and a rear. What makes a deque different is the
unrestrictive nature of adding and removing items.

New items can be added at either the front or the rear. Likewise, existing items can be
removed from either end. In a sense, this hybrid linear structure provides all the
capabilities of stacks and queues in a single data structure.

73 / 86

3.16 The Deque Abstract Data Type

74 / 86

The deque operations are given below:

75 / 86

Deque() creates a new deque that is empty. It needs no parameters and returns
an empty deque.

76 / 86

Deque() creates a new deque that is empty. It needs no parameters and returns
an empty deque.

add_front(item) adds a new item to the front of the deque. It needs the item
and returns nothing.
add_rear(item) adds a new item to the rear of the deque. It needs the item and
returns nothing.
remove_front() removes the front item from the deque. It needs no parameters
and returns the item. The deque is modified.
remove_rear() removes the rear item from the deque. It needs no parameters
and returns the item. The deque is modified.

76 / 86

Deque() creates a new deque that is empty. It needs no parameters and returns
an empty deque.

add_front(item) adds a new item to the front of the deque. It needs the item
and returns nothing.
add_rear(item) adds a new item to the rear of the deque. It needs the item and
returns nothing.
remove_front() removes the front item from the deque. It needs no parameters
and returns the item. The deque is modified.
remove_rear() removes the rear item from the deque. It needs no parameters
and returns the item. The deque is modified.

is_empty() tests to see whether the deque is empty. It needs no parameters and
returns a boolean value.
size() returns the number of items in the deque. It needs no parameters and
returns an integer.

76 / 86

The contents in front are listed on the right. It is very important to keep track of the
front and the rear as you move items in and out of the collection as things can get a bit
confusing.

77 / 86

The contents in front are listed on the right. It is very important to keep track of the
front and the rear as you move items in and out of the collection as things can get a bit
confusing.

Deque Operation Deque Contents Return Value

d.is_empty() [] True

d.add_rear(4) [4]

d.add_rear("dog") ['dog', 4]

d.add_front("cat") ['dog', 4, 'cat']

d.add_front(True) ['dog', 4, 'cat', True]

d.size() ['dog', 4, 'cat', True] 4

d.is_empty() ['dog', 4, 'cat', True] False

d.add_rear(8.4) [8.4, 'dog', 4, 'cat', True]

d.remove_rear() ['dog', 4, 'cat', True] 8.4

d.remove_front() ['dog', 4, 'cat'] True

77 / 86

3.17. Implementing a Deque in Python

78 / 86

Our implementation will assume that the rear of the deque is at position 0 in the list.

79 / 86

Our implementation will assume that the rear of the deque is at position 0 in the list.

In [33]: class Deque:
 """Deque implementation as a list"""
 def __init__(self):
 """Create new deque"""
 self._items = []
 def is_empty(self):
 """Check if the deque is empty"""
 return not bool(self._items)
 def add_front(self, item):
 """Add an item to the front of the deque"""
 self._items.append(item)
 def add_rear(self, item):
 """Add an item to the rear of the deque"""
 self._items.insert(0, item)
 def remove_front(self):
 """Remove an item from the front of the deque"""
 return self._items.pop()
 def remove_rear(self):
 """Remove an item from the rear of the deque"""
 return self._items.pop(0)
 def size(self):
 """Get the number of items in the deque"""
 return len(self._items)

79 / 86

You can see many similarities to Python code already described for stacks and queues.
You are also likely to observe that in this implementation adding and removing items
from the front is whereas adding and removing from the rear is . This is to be
expected given the common operations that appear for adding and removing items.
Again, the important thing is to be certain that we know where the front and rear are
assigned in the implementation.

O(1) O(n)

80 / 86

3.18 Palindrome Checker

81 / 86

A palindrome is a string that reads the same forward and backward, for example, radar,
toot, and madam. We would like to construct an algorithm to input a string of characters
and check whether it is a palindrome.

82 / 86

A palindrome is a string that reads the same forward and backward, for example, radar,
toot, and madam. We would like to construct an algorithm to input a string of characters
and check whether it is a palindrome.

The solution to this problem will use a deque to store the characters of the string. We will
process the string from left to right and add each character to the rear of the deque. At
this point, the deque will be acting very much like an ordinary queue.

82 / 86

A palindrome is a string that reads the same forward and backward, for example, radar,
toot, and madam. We would like to construct an algorithm to input a string of characters
and check whether it is a palindrome.

The solution to this problem will use a deque to store the characters of the string. We will
process the string from left to right and add each character to the rear of the deque. At
this point, the deque will be acting very much like an ordinary queue.

However, we can now make use of the dual functionality of the deque. The front of the
deque will hold the first character of the string and the rear of the deque will hold the last
character.

82 / 86

83 / 86

Since we can remove both of the front and rear characters directly, we can compare them
and continue only if they match. If we can keep matching first and the last items, we will
eventually either run out of characters or be left with a deque of size 1 depending on
whether the length of the original string was even or odd. In either case, the string must
be a palindrome.

83 / 86

In []: from pythonds3.basic import Deque

def pal_checker(a_string):
 char_deque = Deque()

 for ch in a_string:
 char_deque.add_rear(ch)

 while char_deque.size() > 1:
 first = char_deque.remove_front()
 last = char_deque.remove_rear()
 if first != last:
 return False

 return True

84 / 86

In []: from pythonds3.basic import Deque

def pal_checker(a_string):
 char_deque = Deque()

 for ch in a_string:
 char_deque.add_rear(ch)

 while char_deque.size() > 1:
 first = char_deque.remove_front()
 last = char_deque.remove_rear()
 if first != last:
 return False

 return True

In []: print(pal_checker("lsdkjfskf"))
print(pal_checker("radar"))

84 / 86

References

85 / 86

1. Textbook CH3

86 / 86

	Linear Structure
	3.1~3.2 What Are Linear ADT?
	3.3 Stacks
	3.4 The Stack Abstract Data Type
	3.5 Implementing a Stack in Python
	3.8. Converting Decimal Numbers to Binary
Numbers
	3.9. Infix, Prefix, and Postfix Expressions
	3.9.1 Conversion of Infix Expressions to Prefix and Postfix
	3.9.2. General Infix-to-Postfix Conversion
	3.9.3. Postfix Evaluation

	3.10. Queues
	3.11 The Queue Abstract Data Type
	3.12 Implementing a Queue in Python
	3.13. Queue Simulation: Hot Potato
	3.15 Deques
	3.16 The Deque Abstract Data Type
	3.17. Implementing a Deque in Python
	3.18 Palindrome Checker
	References

